Dubovickii-Miljutin Theory and Pontrjagin's Maximum Principle

Kevin R. Vixie

Portland State University and Los Alamos National Laboratory

Abstract

In this talk I give a brief introduction to generalized Lagrange multipliers and then apply them to elucidate the idea of the proof of Pontrjagin's Maximum Principle.

Outline

- Optimal Control: The bang-bang principle
- Constrained Optimization: The usual elementary version
- Constrained Optimization: Dubovickii-Miljutin Theory
- Pontrjagin's Maximum Principle: proof via DM theory
- Example: Classical Mechanics
- References

Optimal Control: The bang-bang principle

Suppose that we are driving a one dimensional vehicle ...

- P1.1: Path $a \leq x \leq b$
- P1.2: Contraints $||\ddot{x}|| \leq 1$
- P1.3: Initial Conditions x(0) = a , $\dot{x}(0) = 0$
- P1.4: Final Condition x = b
- **P1.5:** Input the acceleration , \ddot{x}
- P1.6: Objective minimize time taken to go from a to b

Then ...

Theorem. [Bang-Bang Principle] The solution of P1 is to accelerate at 1 for sqrt(4(b-a))/2 seconds and then to accelerate at -1 for sqrt(4(b-a))/2 seconds. (Therefore implying that the optimal input or control is discontinuous!)

A picture ...

Curve lies in trianglular region ... (intermediate value theorem)

Constrained Optimization: The Usual Elementary Case

Typical approach to constrained optimization as seen in a first course in calculus, is to use Lagrange multipliers.

- **P2.1 Objective** Maximize $f(x), f: \mathbb{R}^n \to \mathbb{R}$
- **P2.2 Constraint** $g(x) = 0, g: \mathbb{R}^n \to \mathbb{R}$

Theorem. [Necessary Condition] For x^* to be a solution of P2,

$$\nabla f(x^*) = \lambda \nabla g(x^*)$$

for some $\lambda \in R$.

Another Picture ...

the normal vectors must colinear ... in fact if we have that $g \leq 0$ as the constraint, then $\lambda \geq 0$.

Constrained Optimization: Dubovickii-Miljutin Theory

Suppose we modify the previous example to a bit more general picture.

P3.1 Objective Maximize $f(x), f: \mathbb{R}^n \to \mathbb{R}$

P3.2 Constraints

$$G_i(x) \leq 0, i = 1, 2, ..., m; G_i : \mathbb{R}^n \to \mathbb{R}$$

P3.1' Objective Minimize $f(x) \equiv -f(x), f: R^n \rightarrow R$

P3.2' Constraints

$$G_i(x) \leq 0, i = 1, 2, ..., m; G_i : \mathbb{R}^n \to \mathbb{R}$$

Theorem. [Necessary Condition] For x^* to be a solution of P3,

$$abla f(x^*) = \sum_i \lambda_i
abla G_i(x^*)$$

for some $\{\lambda_i\}_1^m \in R_+^m$.

Another picture,

In this case we will have that λ_1 and λ_2 are both nonnegative.

Comments

m < n >> Lagrange relation special

 $m=n\,$ Intersection typically one point

m>n Intersection special ... typically some constraints not active

Cones and Dual Cones

Review ...

Vector Space
Hausdorff
Topological Vector Space
Seminorm
Locally convex spaces

Definition. [Cones and Dual Cones] 1) A subset K, of a locally convex space X is a cone if, given that $k \in K$ and $\lambda > 0$ this implies $\lambda k \in K$. 2) K^+ is the dual cone to K, defined to be all the elements \hat{k} of X^* such that $\hat{k}(k) \geq 0 \ \forall k \in K$.

For example the dual cone of a half space is a ray normal to that half space. Here we have identified the space and it's dual ... If we look at a cone K (green) in \mathbb{R}^2 and its dual cone K^+ (red) in $(\mathbb{R}^2)^*$ we might have something like ...

Facts:

Convexity: Cones need not be convex ... dual cones always are.

Duality $K^{++} = \bar{co}K$ when $K \neq \emptyset$.

Minimum Values If $f \in X^*$ and $K \neq \emptyset$, then $\{\inf f(k) | k \in K\} = 0 \text{ iff } f \in K^+ \text{ and } \{\inf f(k) | k \in K\} = -\infty \text{ iff } f \ni K^+.$

Now we come to the three main results of this section. Each one is really a special of the previous one.

Suppose that

A1: $K_0, K_1, ..., K_{n+1}$ are convex cones in a real LCS X

A2: $K_0, K_1, ..., K_n$ are open and $K_0 \neq \emptyset$.

then,

Lemma. [Dubovickii-Miljutin]

$$K_{int} \equiv \bigcap_{i=0}^{n+1} K_i = \emptyset \iff f_0 + f_1 + ... + f_{n+1} = 0$$

where $f_i \in K_i^+$, and f_i are not all zero.

• Examples

Idea of Proof [1, v.3,ch.48]:

 (\Leftarrow)

- ullet assume not ... and $u \in K_{int}$
- w.l.o.g. $f_0(v) \neq 0$ for some v.
- $f_0(u) + \lambda f_0(v) \geq 0$ for all λ in a nbhd. of 0.
- contradiction

 (\Rightarrow)

 $\left(\bigcap_{i=0}^m K_i\right)^+ = K_0^+ + K_1^+ + \ldots + K_m^+$ for $m \leq n$.

ullet there is an $m \leq n$ such that

$$K \equiv igcap_{i=0}^m K_i
eq \emptyset \;\;,\;\; K_m \cap K_{m+1} = \emptyset$$

• K is open and can be separated from K_{m+1} ... i.e. $\hat{f} \neq 0, \in X^*$ and $\hat{f}(K_{m+1}) \leq a \leq \hat{f}(K), (a \in R)$.

- Therefore, $\hat{f} \in K^+$, $-\hat{f} \in K^+_{m+1}$.
- ullet Use (*) to get that $\hat{f}=f_0+f_1+...+f_m$, some $f_0,f_1,...,f_m\in (K_0^+,K_1^+,...,K_m^+)$ and set $f_{m+1}=-\hat{f}$. Set $f_{m+2}=f_{m+3}=...=f_n=0$.
- Done (almost)
- idea of proof of (*) still needed.
- (⊇) easy
- ullet (\subseteq) not so easy ... uses Krein extension theorem ...
- $Y \equiv \prod_{i=0}^m X$, it's diagonal L, and $C \equiv \prod_{i=0}^m K_i$.
- $(\prod_{i=0}^m X)^* = \prod_{i=0}^m X^*$.
- ullet $f\in (igcap_{i=0}^m K_i)^+$, F defined via f on diagonal.
- ullet $F \geq 0$ on $C \cap L$... KE theorem ... $F \geq 0$ on C.
- $F = f_0 + f_1 + \ldots + f_m$, $f_i \in X^*$.
- $f_i \in K_i^+$.
- Done!

Second result ... A little more familiar statement!

(remember, we are heading towards constrained max/min problems in Banach spaces!)

Problem: Minimize $F_0(u)$ given,

- ullet Inequality type constraints: $u \in N_j$, j=1,...,n
- ullet Equality type constraint: $u \in N_{n+1}$

Goal: Find necessary condition of the form

$$f_0 + f_1 + \dots + f_{n+1} = 0$$
 , $f_i \in K_i^+$

For some as yet undefined dual cones derived from the constraints.

Cones made up of:

- ullet regular descent directions K_0
- ullet admissable directions K_j , j=1,...,n
- ullet tangential directions K_{n+1}

Theorem 1. Given the assumptions,

- ullet $D(F_0)$ is a functional in neighborhood of u_0
- $N_1, N_2, ..., N_n$ are subsets of X with nonempty interior, but N_{n+1} may have empty interior.
- ullet $K_0,K_1,...,K_{n+1}$ are convex and $K_0
 eq\emptyset$

we have that

Necessary Condition If u_0 is a local solution to the above problem, there exists f_i 's in the K_i^+ 's such that

$$f_0 + f_1 + \ldots + f_{n+1} = 0$$

.

Nondegeneracy $\bigcap_{i\neq k} K_i \neq \emptyset \implies f_k \neq 0$

Sufficient Condition The necessary condition is sufficient to guarentee that u_0 is a global minimum if

- ullet $F_0:X o \Re$ is convex and continuous
- $N_1, ..., N_{n+1}$ are convex and there is a point h in the interior of $N_1, ..., N_n$ which is also in N_{n+1} .

Proof of Theorem 1:

... use the Lemma! ... and use some intuition for the Nondegeneracy and Sufficient conditions.

(Theorem 1 is due to Dubovickii and Miljutin (1965))

Third result ... Constrained optimization (infinite dim.)!

As preparation for the next theorem, we consider the problem that will look most familiar to those aquainted with constrained optimization.

Problem: Minimize $F_0(u)$ with the constraints given by

- C1 $F_j \leq 0$, j = 1, ..., n-1
- C2 $u \in N_n$
- C3 $F_{n+1}(u) = 0$

... Assuming that we have ...

- A1 $F_0, ..., F_{n-1}: X \to \Re$ are F-differentiable functionals.
- A2 N_n is a convex subset of X with non-empty interior.
- A3 $F_{n+1}: X \to Y$ is a continuously F-differential operator.
- A4 X and Y are real Banach spaces.
- A5 Regularity: The range $R(F_{n+1}^{'}(u))$ is closed in Y.

Then we would like nec. and suf. conditions ...

Theorem 2. [Generalized Kuhn-Tucker Theory] For the above minimization problem we have the following condition that is necessary for u_0 to be a local solution.

$$\sum_{i=0}^{i=n-1} \lambda_i DF_i(u_0)(u\!-\!u_0)\!+\!\langle y^*, DF_{n+1}(u_0)(u\!-\!u_0)
angle \geq 0 \;\; orall u \in N_n$$

where

multipliers: $\lambda_i \geq 0$, $y^* \in Y^*$ non-degeneracy condition: $\lambda_i F_i(u_0) = 0$

for
$$i = 0, ..., n - 1$$
.

If $\lambda_0 > 0$ and $F_0, ..., F_{n-1}, \langle y^*, F_{n+1}(\cdot) \rangle$ are convex on X, then the condition is sufficient for u_0 to be a global solution to the minimum problem.

A Pause to Collect and Consider ...

- Theorem 2 "=" Theorem 1
- Theorem 2 permits us to work in functional spaces!!

Another picture ...

... on to Pontrjagin's maximum principle.

Pontrjagin's Maximum Principle: proof via DM theory

The maximum principle concerns itself with solutions to a control problem that minimize some functional. For example, one might want to minimize the time taken to move from point A to point B under constrained controls. This is what we considered in the bang-bang principle above.

In the following we will focus on the statement of the principle and a very brief overview of how the proof is approached. The details will be completely glossed over with a couple of exceptions. For the details, one should consult [1, v.3,ch.48,p.422-33]. What I try to clarify is the fact that we prove the PMP by pushing the problem into a form permitting the application of Theorem 2 ... modulo the introduction of a time scaling function ... and then get the result via the introduction of adjoint states.

Optimal Control Problem P:

Control Functional: $\int_{t_1}^{t_2} f(y(t), w(t), t) dt = min!$

Control Equations: $\dot{y}_i(t) = g_i(y(t), w(t), t)$

Boundary conditions: $h_i(t_2, y(t_2)) = 0$

Control constraints: $w(t) \in W^{[t_1,t_2]}$

...where: i=1,...,N; $y_i(t_1)=a_i$; f,g_i , and h_i are C^1

Comments:

- ullet This covers a huge amount of ground ... note that we obtain discontinuous vector fields through the dependance upon the control w(t) which can be discontinuous.
- ullet we assume t_1 is fixed, but that t_2 is determined by the solution.

Define:

$$H(y,w,p,t,\lambda_0) \equiv \sum_{i=1}^N p_i g_i(y,w,t) - \lambda_0 f(y,w,t)$$

The Theorem ... at last!

Theorem 3. [Pontrjagin's Maximum Principle] Given that $(y(t), w(t), t_2)$ is a solution to P we have that,

- ullet $\exists \lambda_0, lpha_1, ..., lpha_N$, not all zero and $\lambda_0 \geq 0$
- ullet \exists functions $p_i(t)$, i=1,...,N, continuous on $[t_1,t_2]$

such that

$$H(y(t), w(t), p(t), t, \lambda_0) = \max_{w^* \in W} H(y(t), w^*, p(t), t, \lambda_0))$$

and

$$\dot{p}_i = -H_{y_i} \;, \qquad y_i = H_{p_i} \;, \qquad i = 1, ..., N$$

$$p_i(t_2) = -\sum_{j=1}^N rac{\partial h_j}{y_i}(t_2,y(t_2))lpha_j \;, \;\;\;\; i=1,...,N$$

Idea of Proof:

- ullet introduce t=v(au) to transform time t to $au\in[0,1].$
- compute the derivatives
- $\lambda_0 F_0^{'}(\bar{u})(u-\bar{u}) + \langle y^*, F_2^{'}(\bar{u})(u-\bar{u}) \rangle \geq 0$
- introduce adjoint coordinates ... (looks right now)
- switch back to time t.
- done

Next an example ... the Euler-Lagrange equation of classical mechanics.

Example: Classical Mechanics

•
$$\int_0^T L(x(t), u(t))dt = \min!$$

•
$$\dot{x}(t) = v(x(t), u(t))$$
, on $[0, T]$

- ullet T fixed
- $u(t) \in U$

Define $H(x,u,p) \equiv pv(x,u) - L(x,u)$ and we get

•
$$\dot{p}(t) = -H_x(x(t), u(t), p(t))$$

$$p(T) = 0$$

$$\bullet \ \ H(x(t),u(t),p(t)) = \max_{u \in U} H(x(t),u,p(t))$$

$$ullet$$
 ... which is $H_u(x(t),u(t),p(t))=0$ for smooth H .

SO, specializing to the case where $v\equiv u$ and $U=\Re$, we get

$$\bullet$$
 $u(t) = \dot{x}(t)$

$$\bullet \ \ H = p(t)\dot{x}(t) - L(x(t), \dot{x}(t))$$

$$\bullet \ p(t) = L_{\dot{x}}(x(t), \dot{x}(t))$$

$$ullet$$
 $\dot{p}(t)=rac{d}{dt}L_{\dot{x}}(x(t),\dot{x}(t)=L_{x}(x(t),\dot{x}(t))$

Summary

Outline reiterated:

- Optimal Control: The bang-bang principle
- Constrained Optimization: The usual elementary version
- Constrained Optimization: Dubovickii-Miljutin Theory
- Pontrjagin's Maximum Principle: proof via DM theory
- Example: Classical Mechanics

The moral of the story is that Pontrjagin's Maximum Principle boils down to a result about cones and dual cones in Banach spaces ... that at optimal points the intersection of admissable cones is empty and that this can be translated into a generalized langrange multiplier sum of dual vectors that is non-negative in some cases and identically zero in others. (admissable cones = cones of admissible directions)

Reiteration of key result ...

Key Result:

Suppose that

A1: $K_0, K_1, ..., K_{n+1}$ are convex cones in a real LCS X

A2: $K_0, K_1, ..., K_n$ are open and $K_0 \neq \emptyset$.

then,

Lemma. [Dubovickii-Miljutin]

$$K_{int} \equiv \bigcap_{i=0}^{n+1} K_i = \emptyset \iff f_0 + f_1 + \dots + f_{n+1} = 0$$

where $f_i \in K_i^+$, and f_i are not all zero.

References

[1] Eberhard Zeidler. *Nonlinear Functional Analysis and its Applications*. Springer Verlag, 1985. (in five volumes).